Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms.

نویسندگان

  • Laurence Daulhac
  • Christophe Mallet
  • Christine Courteix
  • Monique Etienne
  • Eliane Duroux
  • Anne-Marie Privat
  • Alain Eschalier
  • Joseph Fialip
چکیده

Molecular mechanisms underlying diabetes-induced painful neuropathy are poorly understood. We have demonstrated, in rats with streptozotocin-induced diabetes, that mechanical hyperalgesia, a common symptom of diabetic neuropathy, was correlated with an early increase in extracellular signal-regulated protein kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) phosphorylation in the spinal cord and dorsal root ganglion at 3 weeks after induction of diabetes. This change was specific to hyperalgesia because nonhyperalgesic rats failed to have such an increase. Immunoblot analysis showed no variation of protein levels, suggesting a post-translational regulation of the corresponding kinases. In diabetic hyperalgesic rats, immunocytochemistry revealed that all phosphorylated mitogen-activated protein kinases (MAPKs) colocalized with both the neuronal (NeuN) and microglial (OX42) cell-specific markers but not with the astrocyte marker [glial fibrillary acidic protein (GFAP)] in the superficial dorsal horn-laminae of the spinal cord. In these same rats, a 7-day administration [5 microg/rat/day, intrathecal (i.t.)] of 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U0126), 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), and anthra(1,9-cd)pyrazol-6(2H)-one (SP600125), which inhibited MAPK kinase, p38, and JNK, respectively, suppressed mechanical hyperalgesia, and decreased phosphorylation of the kinases. To characterize the cellular events upstream of MAPKs, we have examined the role of the NMDA receptor known to be implicated in pain hypersensitivity. The prolonged blockade of this receptor during 7 days by (5R, 10S)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-10-imine hydrogen maleate (MK801; 5 microg/rat/day, i.t.), a noncompetitive NMDA receptor antagonist, reversed hyperalgesia developed by diabetic rats and blocked phosphorylation of all MAPKs. These results demonstrate for the first time that NMDA receptor-dependent phosphorylation of MAPKs in spinal cord neurons and microglia contribute to the establishment and longterm maintenance of painful diabetic hyperalgesia and that these kinases represent potential targets for pain therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Enhancement of spinal dorsal horn neuron N-methyl-D-aspartate receptor phosphorylation as the mechanism of remifentanil-induced hyperalgesia: Roles of protein kinase C and calcium/calmodulin-dependent protein kinase II

Background Modulation of N-methyl-D-aspartate receptor subunits NR1 and NR2 through phosphorylation mediates opioid-induced hyperalgesia, and activations of protein kinase C and extracellular signal-regulated kinase 1/2 potentiate while activation of calcium/calmodulin-dependent protein kinase II inhibits opioid-induced hyperalgesia. However, the mechanism of opioid-induced hyperalgesia develop...

متن کامل

Phosphorylated Histone 3 at Serine 10 Identifies Activated Spinal Neurons and Contributes to the Development of Tissue Injury-Associated Pain

Transcriptional changes in superficial spinal dorsal horn neurons (SSDHN) are essential in the development and maintenance of prolonged pain. Epigenetic mechanisms including post-translational modifications in histones are pivotal in regulating transcription. Here, we report that phosphorylation of serine 10 (S10) in histone 3 (H3) specifically occurs in a group of rat SSDHN following the activ...

متن کامل

Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing.

We examined the effect of p38 mitogen-activated protein kinase (MAPK) inhibitors in models of nociception and correlated this effect with localization and expression levels of p38 MAPK in spinal cord. There was a rapid increase in phosphorylated p38 MAPK in spinal cord following intrathecal administration of substance P or intradermal injection of formalin. Immunocytochemistry revealed that pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 70 4  شماره 

صفحات  -

تاریخ انتشار 2006